async function processMessages(messages, threadId) {
// Your agent's logic to process messages and generate a response
// This is where you would integrate with your LLM, tools, etc.
const response = {
id: generateId(),
object: 'chat.completion',
created: Math.floor(Date.now() / 1000),
model: 'your-agent-model',
choices: [
{
index: 0,
message: {
role: 'assistant',
content: 'This is a response from your agent.'
},
finish_reason: 'stop'
}
],
usage: {
prompt_tokens: 0,
completion_tokens: 0,
total_tokens: 0
}
};
return response;
}
async function streamResponse(res, messages, threadId) {
// Example of streaming a response with thinking steps and tool calls
// Stream thinking step
const thinkingStep = {
id: `step-${generateId()}`,
object: 'thread.run.step.delta',
thread_id: threadId,
model: 'your-agent-model',
created: Math.floor(Date.now() / 1000),
choices: [
{
delta: {
role: 'assistant',
step_details: {
type: 'thinking',
content: 'Analyzing the user request and determining the best approach...'
}
}
}
]
};
res.write(`event: thread.run.step.delta\n`);
res.write(`data: ${JSON.stringify(thinkingStep)}\n\n`);
// Wait a moment to simulate processing
await new Promise(resolve => setTimeout(resolve, 1000));
// Stream final message
const messageChunk = {
id: `msg-${generateId()}`,
object: 'thread.message.delta',
thread_id: threadId,
model: 'your-agent-model',
created: Math.floor(Date.now() / 1000),
choices: [
{
delta: {
role: 'assistant',
content: 'This is a streamed response from your agent.'
}
}
]
};
res.write(`event: thread.message.delta\n`);
res.write(`data: ${JSON.stringify(messageChunk)}\n\n`);
// End the stream
res.end();
}
function generateId() {
return Math.random().toString(36).substring(2, 15);
}